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In this article we give a concise history of factoring, thereby concentrating on
ideas and methods which can be found in the Number Field Sieve method.
For more information about the history of factoring or about other important
methods like ECM, Pollard p — 1, Pollard p and SQUFOF, we refer to [5], [30],
[2], [16].

1. EucLD

One of the first persons concerning himself with primality and compositeness
of natural numbers was Euclid. In his work ‘Elements’ [7], written in about
300 B.C., he gave in Book VII the following definitions:

An unit is that by virtue of which each of the things that exist is called one.
A prime number is that which is measured (= divided) by an unit alone.
A composite number is that which is measured by some number.

Although modern definitions are slightly different, it is clear that Euclid con-
sidered the same numbers being a unit, prime or composite among the natural
numbers as we do today. In the same book he states in Proposition 30:

If two numbers by multiplying one another make some number, and any
prime number measure the product, it will also measure one of the original
numbers.

From this proposition one can deduce the Fundamental Theorem of Arithmetic,
which states that factorization into primes is unique up to order.
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2. ERATOSTHENES

The first algorithm which finds all primes up to a user-chosen bound n and
which can also be used for factoring the numbers up to n, is due to Eratosthenes
(276-194 B.C.). His ‘Sieve of Eratosthenes’ starts by listing all integers from
2 to n. Repeatedly the first number of the remaining list is prime, after which
we cross off in the list all multiples of that prime. Because every composite
number has a factor less than or equal to its square root, we can stop after we
have found a prime larger than the square root of n. All remaining numbers
in the list have to be prime. The strength of the Sieve of Eratosthenes is that
it requires no expensive multiplications or divisions. This idea is also used in
the Number Field Sieve.

The simplest algorithm to factor a given number is the ‘trial division’
method, which is still in use for finding prime divisors up to approximately
six or seven decimal digits. It tries to divide a number by the primes which
are in a prepared table or by 2,3 and subsequently by the terms of a sequence
which contains the primes 5,7,... as a subsequence (like the numbers 6k =+ 1).
To find larger divisors, faster, less memory consuming methods are known at
present; they will be discussed further on.

3. FERMAT

In 1643 FERMAT [8] noted that when n is composite and odd, then n = zy with
z,yodd and 1 < z < y/n. Witha = (z+y)/2, b = (z — y)/2, we can deduce
n=a? -5 and v/n < a < (n+ 1)/2. Thus to factor n, one can consider
all values of r; = a? —n for ap = [v/nl,a1 = ao +1,...,a;41 = a; + 1,...
until 7; is a perfect square. Such an r; does exist and (a; + /75)(a; — \/73)
will be a non-trivial factorization of n. As Fermat noticed, his method can
be made faster by calculating 7;41 from r;y; = r; + 2a; + 1 and by using
that for example a number ending on 19 cannot be a square. In an example
Fermat factored 2027651281 = 44021 - 46061. If one knows that the factors
of a composite number n are very close to \/n this method can still be used,
otherwise for large n it is very ineffective. But the idea of constructing integers
a® and b? such that n equals or — as used first in 1886 by SEELHOFF [26] — more
generally divides their difference, is used in many factoring methods, including
the Number Field Sieve. Until 1886 however, most effort was spent in another
direction.

4. LEGENDRE

In his - originally published in 1798 — ‘Théorie des Nombres’ [11] LEGENDRE
gave a method to exclude more and more primes from being a possible divisor
of n by finding more and more independent quadratic residues modulo n. If
2?2 = a mod n has a solution z for a certain a, then a is a quadratic residue
modulo n (denoted with the Legendre symbol (%) = 1) and a is also a quadratic
residue for any prime divisor p of n. Since a is quadratic residue of only about
half of the primes, this excludes the other primes as a possible divisor of n. If
one has found k independent quadratic residues, the number of trial divisions
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of n can be reduced to about 27*m(y/n). Legendre finds quadratic residues
modulo n by calculating continued fraction expansions of the square root of n
and small multiples of n. Such expansions

1
Vkn = ¢y + '—“——‘—‘-—-c " T (1)
VT e

are denoted by Vkn = [co,c1,co, 0, ...] and can be calculated by defining
2o = Vkn,¢; = |x;), Tip1 = 1/(z; — ¢;). They are infinite and periodic (see for
example [24]). To calculate the partial denominators ¢; we look at the example
given by Legendre. He tried to factor the number n = 333667 by calculating
the continued fraction expansion of v/n for which zy = v/333667, ¢y = 577 and

T= g = S = 14 g
T2 = \/gitim = \/241_7161 = 1+ 5%#
T3 = \/54£7256 = \[E_;m = 1+ %3‘81
7, = Mn = WAL - 34l

which gives V333667 = [577,1,1,1,3,.. ]. If we define (J; by the denominator
when we have written z; in the form (vkn + J)/Q; then for certain a; and b;
the equation

knb? = af + (~1)""1Q @)

holds, which means that (—1)!Q; is a quadratic residue modulo n. The a; and
b; are the numerator and the denominator of the good (and in certain sense
the best) rational approximation of 1/n obtained by stopping the expansion (1)
after ¢;. They can also be calculated using the following sequences:

a_1 =0, ap=1, ap =cp_1ap-1 +as_2 k=19
by =1, bp=0, br=cr_1br_1+br_z P

Thus Legendre found —738 (hence also —82), 417, —643, and (by expanding \/n
further) also 69, —288 (hence also —2) as quadratic residues of n. The equality
3n = 1001001 = (1001)2 — 10(10%) gave him also 10 as quadratic residues of n.

By using that the only primes p for which (:pl) =1 are of the form 8n + 1 or

8m + 3 and by using similar formulas for the restrictions (l—pg) =1, (%) =1

and "%2) =1, Legendre found that the only primes which could divide n are

83,107,163,401, 409,467 and 569. None of them does divide n and therefore
333667 is prime. As we will see these ideas of Legendre are the basis of the
modern factoring method CFRAC.

5. GAUSS

A few years later, in 1801, Gauss indicated in his famous book ‘Disquisitiones
Arithmeticae’ [9, Art. 329-332] that he was especially interested in small
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quadratic residues, so that he could use his prepared table in which he had
denoted for all primes up to some bound whether or not they are a quadratic
residue modulo small numbers. Note that if (2) = Land (£) = 1 then (£) =1

a

and if (%2—) =1, then (;) = 1. Therefore by finding many quadratic residues

which factor over small primes, it is sometimes possible to construct small
quadratic residues. Of the three methods to find quadratic residues that Gauss
described, the simplest method writes a multiple of n as a sum: kn = a+b
where b can be negative. Now —ab = a? mod n is a quadratic residue modulo
n. By taking for a (a small multiple of) a square differing from kn by a num-
ber that factors into small primes, one finds a useful quadratic residue. For
example n = 997331 = 2 - 7062 + 3 - 17 - 3% gives —2 - 3 - 17 as a quadratic
residue. Combining this with 3-7-17 and 17 which he found with one of his
other methods, gave —14 and —6. After finding that —6,13,—14,17,37 and
—53 are quadratic residues modulo 997331, Gauss consulted his prepared table
of which we show here a small part with only the columns of the mentioned
quadratic residues:

—6 | 13 | -14| 17 | 37 | 53
3+ [+ [ + + |+
5 1 + +

7|+ + +

1| + +

w7+ |+ |+ |+ |+ |+

It appears that 127 is the only prime < /n for which —6,13,—14, 17,37 and
—53 are all quadratic residues, and therefore the only candidate for being a
divisor of n. Indeed n = 127 - 7853. Further on we will return to this idea of
trying to find and combine numbers which factor into small primes.

6. SIEVING DEVICES

Another important idea of GAUss [9, Art. 320] is nowadays called modular
exclusion. He wanted to solve the equation z? = a + my, for integers x and
y, but his observation applies to f(z) = g(y) for f(z),g(z) € Z[z]. Select
different moduli E;, Es, ... E,. and find for each value of z = 0,1,... E; the
possible residue classes for y modulo E;. Combine these to find the permissible
residue classes for y modulo the least common multiple of the E;’s. This idea
was used for factoring numbers of the form (a* —1)/(a — 1) by PEPIN [21]. He
found that an equation of the form

az? 4+ 2bz + ¢ = u? (3)

where a, b and c are known integers and the value of z is bounded (in terms of
a, b, ¢), should have a solution for z and u. With help of the modular exclusion
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technique of Gauss he tried to find solutions. LAWRENCE [10] was the first who

had the idea of building a machine for mechanizing the process of solving (3).
As described in [30]:

“Lawrence suggested the construction of a machine in which gears of
m teeth would be used for each exclusion modulus m. The gears (each
with the same tooth size) would be driven by the same diving gear, and,
as they would be of differing diameters, would have to be mounted on
different shafts. The teeth on each m-toothed gear would be numbered
0,1,2,...,m — 1, and a brass stud would penetrate through it at the
point(s) of an acceptable (mod m) residue (One for which (3) could hold
for z mod m). When studs from each of the gears were all in contact a
circuit would be completed and a bell would ring or the machine would
stop, indicating to the operator that a solution of (3), modulo the least
common multiple of the exclusion moduli, had been detected. Of course,
in order to determine the z-value, a count would have to be recorded of
the number of rotations of the driving gear.”

As can be read in [30], [29], [14] and [20] many persons, the most prominent
being Lehmer, have actually built these kind of machines and factored numbers
with them. Up to 1970 these sieve methods were the fastest techniques for
factoring.

7. SEELHOFF
In 1886 SEELHOFF [26] published a method in which he used the ideas of Fermat
and Gauss. Put n = w? + r, where w = |/n]. If p is any prime such that

(%) = 1, solve p? = n mod p*. Seelhoff suggested that for values of n of

approximately 15 digits, one could try for p*: p = 2 with k& < 10, 3 with k£ < 6,
5 with £ < 4 and the primes from 7 to 97 with k£ < 2. Try to find a ¥ such
that b = a(2w — a) + 7 where o = w + (p + yp*) factors into a square and
small primes. We then have n = (w ~ &)? + b and p*|b. When || is near p¥,
then |b| will be approximately 2p*./n. Because b is divisible by p*, b should be
much easier to factor than n. One hopes to find a selection of the equalities
(w — a@)? = —b + n such that the multiplication of their various —b’s gives a
square.

As an illustration of this method we give Seelhoff’s example. For n =

7-23 4+ 1 we get w = 346783 and r = 635200. He found three solutions of
2 =

p n mod p* and values of a, such that b factored in a square times small
primes:
p? = nmodp* o b (w—a)? = —b+n
1552 = n mod 372 1950 2.7.11-2960%2 | 3448332 = —-2.7.11-29602 +n
63262 = nmod 1272 | 143432 71061722 2033512 = —7-1061722 +n
12142 = nmod 372 —3836 | —2-11-110262 | 3506192 = 2-11-.11026% +n
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From the first two equations he obtained:
11 - 8320820292 = 2 - 150479740% mod n
and combining this result with the third equation gave:
50459950484647% = 26380527979530% mod n
or
n | (50459950484647 — 26380527979530) x (50459950484647 +26380527979530).

Now gcd(50459950484647 — 26380527979530, n) = 317306291 gives a factor of
n. Thus Seelhoff — as can be read in [30] - and not Kraitchik as for example
stated in [24], was the first who combined congruences consisting of squares
and small primes modulo n to an equation of the form a? = b? mod n.

8. LEHMER AND POWERS

From the way Seelhoff used his equations (w—a)? = —b+n one can deduce that
the only thing one really needs are congruences of the form a? = b mod n such
that the product of the b’s is a square. It was noted by LEHMER and POWERS
[12] that one can use equation (2) to construct these kind of congruences. If
we define R; := (—1)*Q;, then equation (2) gives the congruence

a? = R; mod n.

When {R;,, R;,,. .., Ri,} is a subset of the R;’s such that their product is R2,
then we have )

k

H a; = R? mod n.

j=1

If n is odd and not a prime(power), calculating the greatest common divisor
of H;;l a;; — R and n gives a factor of n for at least half of the solutions of
z? = y? mod n with y # 0 mod n. Because of the tedious calculations to find
an appropriate subset, which often gave a trivial factorization, Lehmer and
Powers did not consider their method to be practical. It was however the basis
for the Continued Fraction method of Morrison and Brillhart.

9. MORRISON AND BRILLHART

In 1970 MORRISON and BRILLHART [18] developed the Continued Fraction
method (CFRAC), by combining the idea of Lehmer and Powers with a method
to construct R from a set of ‘promising’ R;’s. With their method they set a
new record by factoring F7, the seventh Fermat number of 39 digits [19]. They
introduced the ‘factor base’, a collection F(B) of primes up to a certain bound
B, and searched for R;’s which factor completely over these primes. Since

by (2) primes p for which (%") = —1 will never appear in the factorization of
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R;’s, they defined F(B) as the set of primes p up to B with (k?") >0. If an

R; factors completely over F(B) we can write

Riz(——l)e(i’"l) H pe(i,p)
PEF(B)

and call R; arelation. In order that the product over a subset S of the relations
is a square, every exponent »_ . e(i,s) in

I1 Ri=(-0Zet ] p2etd) = p2 4)

R;eS pEF(B)

should be even. For every R; which factors completely over the factor base,
Morrison and Brillhart defined a vector v(z) of length 1 + |F(b)|. This vector
contains all e(¢, s) mod 2 - indicating if s occurs in R; to an even or an odd
power - in an order which is the same for all R;’s. The vectors are put as
columns in a matrix, and a non-trivial vector of the null space over Fy of this
matrix indicates a subset S for which (4) holds.

As an example Morrison and Brillhart factored the number n = 13290059.
By expanding \/n and by using trial division they found the following R;’s
which factor completely over the primes in F(113):

i | a; modn R; factored
5 | 171341 | —1-2-57-41
10 | 6700527 31-43

22 | 5235158 41-113
23 | 1914221 -1-2-113

26 | 11455708 2-31-53
31| 1895246 | —1-2-52.113
40 | 3213960 2-43.53

Subsequently a matrix is formed by taking as columns the vectors v(i). Here
we only show the rows corresponding to the factors which occur in the factor-
izations of the above stated R;’s:

v(5) 0(10) »(22) v(23) »(26) v(31) w»(40)

-1 1 0 0 1 0 1 0
2 1 0 0 1 1 1 1
5 0 0 0 0 0 0 0

31 0 1 0 0 1 0 0

41 1 0 1 0 0 0 0

43 0 1 0 0 0 0 1

53 0 0 0 0 1 0 1

113 0 0 1 1 0 1 0

Using Gaussian elimination over Fy, Morrison and Brillhart found that the
three vectors (0,1,0,0,1,0,1) (1,0,1,0,0,1,0)* and (1,0,1,1,0,0,0) are in
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the kernel of this matrix. The first vector corresponds with § = { Ry, Rog, R4g}
and gives the congruence

(6700527 - 11455708 - 3213960)% = (2- 31 - 43 - 53)2 mod n

or 1412982 = 1412982 mod n, which does not give a factorization of n. From
the second vector we can deduce

(171341 - 5235158 - 1895246) = (2 - 5% - 41 113)* mod n,

what reduces to 130584092 = 2316502 mod n. But ged(13058409—231650,n) =
1 and this dependency fails also to give a non-trivial factorization of n. Finally
the last vector leads via

(171341 - 5235158 - 1914221)? = (2-5-41-113)° mod n

and 14695042 = 463302 mod n to the factor ged (1469504 — 46330, n) = 4261 of
n.

Morrison and Brillhart also introduced a refinement of the factor base ap-
proach, which cuts the total running time by almost one half. They used what
had been previously noticed by Eratosthenes: if one has removed all prime
divisors up to a bound B from a number 7, and the remaining cofactor is less
than B2, then the cofactor is prime. Now also R;’s which - after removing the
factors up to B with trial division — have a remaining (prime) cofactor between
B and B? are used as relation. Because these relations factor over F(B?) in-
stead of over F(B), the vectors v(i) should be of length 1+ |F(B?)| and contain
the values of e(i, s) for all factors s < B2. The corresponding matrix will have
more rows and therefore, to guarantee the existence of non-trivial vectors in
the kernel, also more relations have to be found. But the increase in efficiency
of finding relations is so large, that the net result is positive. Morrison and
Brillhart spent up to 95% of the computer time on the trial divisions. With
use of computers the method defeated the sieving devices and reigned until the
introduction in 1982 of the Quadratic Sieve method, in which the trial divi-
sions are replaced by sieving. Before we discuss this method, we describe the
discovery of the so-called RSA cryptosystem.

10. RIVEST, SHAMIR AND ADLEMAN

In 1977 Rivest, Shamir and Adleman introduced the RSA public-key cryptosys-
tem [25]. Together with the increase of computing power, this application of
the supposed difficulty of factoring was an enormous stimulus for the interest
in and development of factoring methods. The idea of a public-key cryptosys-
tem, where each user v has his own encryption and decryption procedure, was
introduced in 1976 by DiFFIE and HELLMAN [6]. The encryption procedure E,,
is placed in a public file and other persons can use this procedure to encrypt
their message M and send the resulting cipher-text E,(M) to the user. Only
the user u has the corresponding secret decryption procedure D, which he can
apply to reveal the original message M = D,(E,(M)). Besides encryption a
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public-key cryptosystem can also be used to sign a message. User u can sign a
message M by sending D,(M). Anyone can apply the publicly known encryp-
tion procedure E, of the user to reveal M = E,(D,(M)) and concludes that
only user « himself could have constructed D,(M). The procedures D and E
must be bijections and inverses of each other: D(E(M) = E(D(M)) = M for
all M. Furthermore both D(M) and E(M) should be quickly to compute, pairs
(D, E) should be easy to construct and it should be computationally infeasible
to find D given E.

RSA achieves these objectives by letting each user pick two large primes
p and g with p # g. Furthermore it chooses two exponents d and e with
de = 1 mod (p — 1)(¢ — 1). With n = pg the encryption procedure is defined
by E(M) = M*® mod n and the decryption procedure by D(M) = M mod n.
The values of e and n are public, but d, p and ¢ are private. With Euler’s
theorem one can prove that D(E(M) = E(D(M)) = M for all M. The safety
of this cryptosystem is supposed to be as difficult as factoring. When one can
find p and g from n, together with e, one can deduce d.

Rivest, Shamir and Adleman encrypted as an example the sentence “its all
greek to me” (Julius Caesar). With p = 47, ¢ = 59 and n = pq = 2773 they
computed (with a variation of Euclid’s greatest common divisor algorithm) e =
17 and d = 157. With n = 2773 they encoded two letters at a time, substituting
a two-digit number for each letter: blank= 00,a = 01,b=02,...,z = 26. Thus
the message

its all greek to me

is replaced by the numbers
0920 1900 0112 1200 0718 0505 1100 2015 0013 0500.

To encrypt this message every number of 4 digits is raised to the 17th power
and taken modulo n. For example 920'7 = 948 mod n. Thus the whole message
is enciphered as:

0948 2342 1084 1444 2663 2390 0778 0774 0219 1655.

With deciphering, like 948!%7 = 920 mod n the original numbers can be re-
vealed.

11. POMERANCE

In 1982 Pomerance published the Quadratic Sieve method [23], in which most
of the time-consuming trial divisions of the CFRAC method have been replaced
by - for a computer much cheaper — additions. He found congruences modulo
n by searching for values of z for which f(z) = z? — n factors over the factor
base. These values are found by initializing an array with |f(2)| for a range of
consecutive z-values (v/n—M < z < /n+M, say) and by dividing these | f(z)|-
values by all primes in F(B) in a cheap way. Note that if f(z) € Z[z], and
p|f(zo) for some g, than p|f(zo + kp) Yk € Z. For every root f(r) =0 mod p
one constructs the smallest ¢ = r mod p in the array and divides p from all
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|f(t+Ep)| for 0 < k < |(v/n+M —t)/p|. When this is done for all roots and all
p € F(B), the array elements containing 1 betray that the corresponding f(z)
factors over the primes and that a relation is found. To find the factorization of
f(z) trial division should be applied, but note that we apply it to the relations
only, which is a very small part of all investigated f(z) values. A refinement of
this method was proposed by Davis and Holdridge and applied to factor several
numbers in the range of 53-71 digits [4].

If we sieve the 2M values for /n—M < z < /n+M, then the largest residue
is about 2M/n (assuming M < n). MONTGOMERY (28] found a way to stunt
this growth as M grows. His Multiple Polynomial Quadratic Sieve (MPQS)
method finds many polynomials f(z) = a%2? + bz + ¢ with b2 — 4a2%c = kn.

Note that
b\> b2 —4dac _ b\2
f(a:) = (az + —2—0/) - T = (Cl.:l? + ‘2';) mod n.

The values of a, b and ¢ are selected such that when sieving over an interval
|z] < M, the largest residue is at most Mo+/n/2. To sieve 2M values of z,
one can use M /M, different polynomials, sieving 2My values per polynomial
with largest residual Myy/n/2. The reduction of 2M+/n to the much smaller
My+/n/2 is important, since small numbers are more likely to have all prime
factors in F(B).

The sieving procedure can be speeded up in several ways. One can initialize
the array with log |f(z)| instead of |f(x)| and subtract [log p] (where [] is
the nearest integer function) instead of dividing by p. One can use rounded
logarithms to work with integers instead of reals. For an optimal balance
between precision and efficiency one can use a base such that the maximum
value of |f(z)| just fits in one byte. Sieving over small primes is a lot of work
and just a small amount of [log p] is added. Therefore it is more efficient to
sieve over a power of the small primes (< 30, say) only. All these adjustments
do not only make the sieving faster, but also make the final value in the array
elements less accurate. After sieving one should check if the remaining value
looks ‘promising’, i.e. is smaller than some user-determined bound ¢. For
these ‘candidate relations’ one can use trial division to investigate if they really
factor over F(B). In the ‘large prime variation’ one also wants to find relations
containing one large prime q (with B < ¢ < L < B?) and therefore adds log L
to c¢. There exists even a ‘double large prime variation’ where one adds 2 log
L to c and tries to factor (with for example SQUFOF [27], [24, p. 186-193],
[2, §8.7]) a remaining cofactor < L? into at most two prime factors < L. This
version was used in 1994 by A.K. Lenstra and Atkins and 600 volunteers when
they factored the so-called RSA-129, a number that had been given in 1977
by Rivest, Shamir and Adleman to challenge computer scientists [1]. All these
ideas can be applied in the Number Field Sieve method as well, the original
version of which was discovered by John Pollard.
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12. POLLARD

The Special Number Field Sieve (SNFS) method, introduced in 1988 by POL-
LARD [22] and developed in [13], is nowadays the fastest method for numbers
of the form ¢;7! + cos*. The world record is the factorization of (12}°! —1)/11,
a number of 162 decimal digits, which was established in 1994 by Oregon State
University, Oregon, USA and CWI, Amsterdam, The Netherlands. Already in
[13] attempts were made to extend the method to arbitrary integers. Nowa-
days the General Number Field Sieve (GNFS) method is much more developed
and it beats the MPQS method for numbers of more than approximately 105
decimal digits.

The NFS method consists of five stages. In the first stage two irreducible
polynomials f(z),g(z) € Z[z] and an integer m are selected, such that f(m) =
g(m) = 0 mod n. Often one takes f(r) = z — m and for g(z) the base-m
expansion of n, for suitable m. The smaller the coefficients are, the faster the
method is. When applying SNFS, one can use the special form of the number
and find very small coefficients for one of the polynomials. This makes SNFS
considerably faster than GNFS. For simplicity we consider f(z) and g(z) to be
monic in the rest of this chapter.

Let a be a root of f and 8 of g. In the sieving stage we find relations (a,b)
with ged(a,b) = 1 such that the integral norms of a — ba and a — b8

N(a—ba) = b8 f(a/b) and N(a —bg) = b8 g(a/b)

factor over a factor base F(B). This is done, similar to the MPQS method, by
initializing for each value of b and for a range of a-values, an array, first with
the values of log |N(a — ba)| followed by the values of log |N(a — b3)|. For
values of a for which both residues look promising, N{a — ba) and N(a — bf)
can be investigated further with trial division. Although we require two values
to be smooth — instead of only one value in MPQS -, the values of N(a — ba)
and N(a — bB) are so much smaller that there is an overall gain. In fact one
sieves for pairs (a,b) such that both ideals (a — ba)O, and (a — b8)Og factor
over prime ideals with norm < B.

In the filtering stage we try to reduce the size of the matrix. If a prime ideal
is occurring only once to an odd power, the corresponding relation is thrown
away. If a prime ideal is occurring twice to an odd power, the two relations are
grouped and the prime ideal will disappear from the matrix.

Denote by Q, the ring of rational numbers with denominator coprime to
n. The subring Q,[a] of Q(a) consists of expressions E?;%(f)-l(si/ti)ai with
Si,t;i € Z and ged(n,t;) = 1. In the linear algebra stage a matrix is built such
that a vector of the kernel corresponds with a subset S of the relations for
which both [Jg(a —ba) and [Jg(a —bB) are squares — say 72 and 62 - in Q, [a]
and Q, [8], respectively. Among other requirements S is constructed such that
all occurring prime ideals occur to an even power.

The final square root stage serves to construct v and 6 from the found
7% and 2. Thus we have to extract two square roots in algebraic num-
ber fields. Having obtained  and 6 one constructs a quadratic congruence
modulo n in the following way: Define two natural ring homomorphisms:
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$a : Qula] = Z/nZ and ¢g : Qu[B] — Z/nZ by ¢a(ca) = ¢s(8) = m mod n.
Thus ¢Q(Zfi%(f)_1(s,~/ti)ai) = (Zf:%(f)'l s;t7'mt mod n) for s;,t; € Z and
ged(n,t;) = 1. When ¢4(7) = ¢ mod n and ¢g(6) = d mod n, we have

A2 {paMP =6a(r?) =¢al [ (-2 ] (a-bm)2

(a,b)€S (a,b)ES

¢s( [] (a—18)) = ¢s(8%) = {6p(6)}* = &,

(a,b)€S

where = means equality modulo n.

Montgomery, who has done important work in developing the NFS method
([17], [15]) gives an example of this method in [16]. Using CWI’s address,
he picks the number 1098413 and applies SNFS by noticing that 1098413 =
12 - 45% +17%. With m = L he uses

150
flz)=23+12 (f(m)=(%)3+1250modn)
g(z) =452 —17 (g(m) =45 (3£) — 17 =0 mod n)

For these polynomials we find the following set S = {(6,1), (—3,2), (7,3),
(-1,3),(2,5), (3,8), (—9,10)}. With o = /=12 and 8 = L one can deduce:

[[(a—ta) = 7400772+ 1138236a — 1054950°
S

= (2694 + 213a — 28a%)% = 42

28.112.132.232 52624\
Isl(a—bﬂ) - 312 . 54 ‘(18225) '

Because ¢4(v) = 5—6215’72503 mod n, Montgomery gets the congruence

52624\ (/5610203 >

— = —_— mod n

18225 2025
and ged (52624 - 2025 — 5610203 - 18225,n) = 1951 gives the factor 1951 of
1098413.

13. RSA130

On April 10, 1996 a new world record was set by the factorization of RSA130, a
number (not having a special form) of 130 decimal digits [3]. An international
team under guidance of A.K. Lenstra used the General Number Field Sieve
method to beat the 129-digit record that was set on April 2, 1994 by the
Quadratic Sieve method. The gathering of the needed 56 - 10® relations would
have taken 16.5 years on a Sparc 10 workstation with 24 megabytes available
for the sieving process. However, with the help of the World Wide Web many
people could contribute and the sieving phase was done in a few months. The
filtering stage resulted in a 3516502 x 3504823 matrix over F,. Using the
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‘block Lanczos method’ [17] it took 67.5 CPU-hours and 700 megabytes central
memory on a Cray C-90 supercomputer to find 18 vectors of the kernel. The
first two vectors gave trivial factorizations, but the third vector produced:

RSA130 =
18070 82088 68740 48059 51656 16440 59055 66278 10251 67694 01349 17012 70214
50056 66254 02440 48387 34112 75908 12303 37178 18879 66563 18201 32148 80557

39685 99945 95974 54290 16112 61628 83786 06757 64491 12810 06483 25551 57243
X
45534 49864 67359 72188 40368 68972 74408 86435 63012 63205 06960 09990 44599
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